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Abstract

Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and

bioengineering applications as they can directly and non-invasively access confined and hard-to-reach spaces in the

human body. For such potential biomedical applications, the adaptivity of the robot control is essential to ensure the con-

tinuity of the operations, as task environment conditions show dynamic variations that can alter the robot’s motion and

task performance. The applicability of the conventional modeling and control methods is further limited for soft robots at

the small-scale owing to their kinematics with virtually infinite degrees of freedom, inherent stochastic variability during

fabrication, and changing dynamics during real-world interactions. To address the controller adaptation challenge to

dynamically changing task environments, we propose using a probabilistic learning approach for a millimeter-scale mag-

netic walking soft robot using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-

efficient learning scheme by finding the gait controller parameters while optimizing the stride length of the walking soft

millirobot using a small number of physical experiments. To demonstrate the controller adaptation, we test the walking

gait of the robot in task environments with different surface adhesion and roughness, and medium viscosity, which aims to

represent the possible conditions for future robotic tasks inside the human body. We further utilize the transfer of the

learned GP parameters among different task spaces and robots and compare their efficacy on the improvement of data-

efficient controller learning.
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1. Introduction

Soft robots are composed of highly deformable soft materi-

als exhibiting programmable shape change, mechanical

compliance, and high degrees of freedom, which are hard

to achieve using rigid materials (Majidi, 2014). The easier

access to novel fabrication methods further allows the

engineering of stimuli-responsive soft materials that enable

new functionalities for soft robots in multiple length scales

(Shen et al., 2020). Biology remains to be a source of

inspiration for the design, control, and behavior of soft

robots (Laschi et al., 2016) and provides templates for new

application areas in multi-terrain locomotion (Calisti et al.,

2017), adaptive manipulation (Hughes et al., 2016), sen-

sing (Iida and Nurzaman, 2016), human-assistive wearable

systems (Walsh, 2018), and biomedicine (Cianchetti et al.,

2018). Soft robots also enable safe human–robot physical

interaction due to their physical compliance and the

mechanical dampening of excess forces (Polygerinos

et al., 2017), which otherwise require additional computa-

tional effort in conventional robotic systems (Haddadin
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et al., 2017). Small-scale (i.e., ł 1 cm) untethered soft

robots have further potential application areas in medicine

owing to their ability to access enclosed small spaces

non-invasively (Sitti, 2018) and the embodiment of

functionalized materials enabling targeted drug delivery,

diagnostics, and surgery (Cianchetti et al., 2018).

Despite their exciting potential and new capabilities,

soft robots face challenges that arise from the nature of

their soft materials, such as having virtually infinite

degrees of freedom, being prone to fabrication-dependent

performance variabilities that cause more significant

effects at the smaller scale, and nonlinear material beha-

vior (e.g., hysteresis, creep). Moreover, physical interac-

tions of soft-bodied robots with their operation

environment, such as solid or fluid operation medium, are

very hard to model due to complex fluid–structure interac-

tions, soft body dynamics, and contact mechanics. The

combination of these aspects renders the application of

conventional modeling and control methods challenging

for soft robots, especially for untethered systems at the

small scales (Rus and Tolley, 2015). One of the most

widely used methods is the employment of the constant

curvature (CC) models that utilize the well-established

beam theories to model the kinematics and dynamics of

axisymmetrically bending soft robotic systems (Della

Santina et al., 2020; Webster and Jones, 2010).

Alternatively, analytical approaches using Cosserat rod

models (Renda et al., 2018) and geometrically exact mod-

els have been suggested for continuum robots (Grazioso

et al., 2019). Simulation techniques build upon these mod-

eling methods as in the finite-element methods (FEMs),

which construct continuum robot structures using a chain

of rigid elements connected with tunable spring–damper

mechanisms (Chenevier et al., 2018; Goury and Duriez,

2018). Numerical approaches using voxel-based represen-

tations (Hiller and Lipson, 2014) and discrete differential

geometries (DDGs) (Huang et al., 2020) improve the com-

putation time of soft robotic simulations at the expense of

nonlinear dynamics precision. These models and simula-

tion tools typically allow the implementation of static and

dynamic controllers for continuum robots on a larger scale

(Thuruthel et al., 2018). However, the physical application

of these closed-loop controllers depends on the continuous

sensing of body deformations from embedded sensors and

highly responsive actuators, and computationally heavy

model solutions, which are conditions that may not be met

for untethered soft robots at the small scales (Rich et al.,

2018). Therefore, the soft robotic platforms that success-

fully employ the analytical models at the small scales still

depend on either open-loop (Gu et al., 2020; Lu et al.,

2018; Ren et al., 2019; Wu et al., 2019) or manually

applied (Kim et al., 2019) controllers. In particular, for

those robots targeting medical applications, their dynami-

cally changing and deformable task environments,

fabrication-based variations, and material degradation over

prolonged use significantly alter their robotic function per-

formances and pose challenges for the conventional

control strategies (Sitti, 2018). The combination of these

challenges makes the machine learning-based, adaptive,

and data-efficient (i.e., using as few experiments as possi-

ble) control methods more desirable for untethered small-

scale soft robots.

Data-driven machine learning methods may provide

alternative solutions for the design and control of soft

robots in the lack of existing analytical or numerical mod-

els that describe their underlying kinematics, dynamics,

and functions (Chin et al., 2020). One common approach

is to learn these models by gathering data from robot

experiments and training a neural network (NN) architec-

ture (Bern et al., 2020; Hyatt et al., 2019; Thuruthel et al.,

2019). However, the need for data efficiency, i.e., the abil-

ity to learn from only a few experimental trials, presents a

core challenge for such methods (Chatzilygeroudis et al.,

2019). Conversely, Bayesian optimization (BO)

(Ghahramani, 2015; Shahriari et al., 2015) allows for the

maximization of a performance function using a small

number of physical experiments. BO typically employs

Gaussian processes (GPs) (Rasmussen and Williams,

2006) as a probabilistic model of the latent objective func-

tion. Although no explicit dynamics model is needed, GPs

allow for incorporating information as probabilistic priors,

thus reducing the experimental data requirements. There

are emerging examples that demonstrate the application of

this approach to optimize the locomotion performance of

robots on different length scales (Calandra et al., 2016;

Liao et al., 2019; Marco et al., 2020; Yang et al., 2018).

Despite its potential, there are only a few examples that

apply this method to address the controller challenge for

untethered soft robots, such as in the gait exploration of a

tensegrity system (Rieffel and Mouret, 2018), and the opti-

mization of an undulating motion of a microrobot (von

Rohr et al., 2018).

For cases where the training and testing domains show

differences in terms of features or data distribution, transfer

learning (TL) methods may provide further improvements

in data-efficient learning and adaptation to new test cases

(Pan and Yang, 2009). Within the BO applications that

employ GPs, the prior knowledge can be transferred as GP

priors (Raina et al., 2006) and hyperparameters (Perrone

et al., 2019) from the trained domains to provide predictive

information about the unknown features and distributions in

the new test domains. In robotics, TL is typically employed

as the transfer of the models of kinematics and dynamics

between simulated and physical platforms of conventional

rigid robotic systems, such as manipulators (Devin et al.,

2017; Makondo et al., 2018), humanoids (Delhaisse et al.,

2017), and quadrotor platforms (Helwa and Schoellig,

2017). However, the application of TL on soft robotics sys-

tems is still in its early infancy (Schramm et al., 2020).

In our recent work in Culha et al. (2020), we demon-

strated the controller learning of walking soft millirobots

using BO and GPs and showed the improvement of learn-

ing efficiency in means of transferring prior mean infor-

mation between robots as a TL application example. We
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followed the initial example by von Rohr et al. (2018),

which designed a learning scheme by comparing different

GP priors and BO settings on generating a semi-synthetic

dataset that represents the estimated gait controller space

and used this estimation to optimize the one-dimensional

crawling gait of a light-driven soft microrobot. In our

work in Culha et al. (2020), we adopted the magnetic soft

millirobots from Hu et al. (2018) that lacked sufficient

predictive kinematic models and was therefore controlled

with an open-loop system whose multi-dimensional para-

meters were tuned manually. We showed that these robots

suffered performance inconsistencies due to the fabrica-

tion reproducibility issues, material degradation over pro-

longed experiments, and environmental disturbances,

which limited the derivation of a deterministic kinematic

model and the application of relevant model-based con-

trollers. Therefore, we applied BO and GPs to directly

learn the controller parameters while optimizing the stride

length performance of these robots and employed TL

methods to improve learning efficiency using a small

number of physical experiments.

In this study, we extend our previous work in Culha

et al. (2020) and provide an in-depth analysis on using BO

and GPs (in particular for TL) to directly and efficiently

learn the controller parameters of the magnetic soft milli-

robots’ walking gait on task spaces emulating bio-medical

application environments (Figure 1). First, we introduce

our new automated and closed-loop experimental platform

that can run the robot learning experiments repeatedly and

reliably to eliminate the influence of any human interven-

tion, which caused further material degradation and conse-

quent performance inconsistencies in Hu et al. (2018) and

Culha et al. (2020). We start with using an exhaustive

search on the two-dimensional (2D) gait controller para-

meter space of the millirobot and generating benchmark

datasets that show the stride length performances of three

different robots on three different walking surfaces. We

use this benchmark data to learn the optimum gait control-

lers using BO and GPs, and then to compare the influence

of four different TL methods on the improvement of learn-

ing efficiency. We choose the best performing TL method

from these experiments and use it with the BO and GPs to

learn the walking gait controller parameters on a wide

range of task spaces. We test our robots on task spaces

with different surface roughness and friction, and liquid

medium viscosity to emulate the conditions inside the

human body for future target operations. Our results reveal

that the direct controller learning with BO and GPs allows

for adaptation to different task spaces for small-scale

untethered soft robots that are prone to fabrication-, mate-

rial-, and interaction-dependent performance variabilities.

We also show that the effective use of TL improves this

adaptation by exploring a larger set of successful walking

gait controllers within a limited number of physical experi-

ments despite the significantly changing task space condi-

tions. The methodology we present in this study can be

used for controlling future small-scale soft robot

applications for medical operations that require a data-

efficient controller learning system and quick adaptation

to the changing task environments. In summary, the main

contributions of our work are:

1. demonstration of a data-driven optimization tool (i.e.,

BO) that can efficiently learn the gait controllers of a

small-scale untethered robot whose performance is

prone to fabrication-, material-, and physical

interaction-based variabilities;

2. successful testing of the walking gait on three differ-

ent task spaces that emulate, e.g., dynamic

Fig. 1. (a) Fabrication process of the magneto-elastomeric soft

millirobot: the robot, which is composed of non-magnetized

ferromagnetic microparticles homogeneously distributed inside

a silicone elastomer sheet, is rolled around a cylindrical rod and

magnetized with jBj= 1.8 T field (red arrow) with a 45 angle

with respect to the y-axis (see Hu 2018 for details on the

fabrication method). The unfolded robot maintains a periodic

magnetization profile along its body (blue arrows). (b) Photo of

the magnetic actuation and imaging experimental setup with six

electromagnetic coils and two high-speed cameras that allow

real-time evaluation of the robot’s walking gait performance.

Walking gait control parameters during a single period of a

motion (a sample case of 1=f = 90 ms and f = 11 Hz is

normalized to 0–1 on the abscissa). (c) The magnetic field B is

controlled on the y–z plane and shown with shown y and z

components. (d) The magnetic field orientation changes from a1

to a2 and (e) magnitude reaches Bmax. (f) In a single actuation

period of the walking gait, the magnetic soft millirobot follows

four consecutive gait states shown with the photos: (1) relaxed,

(2) front-stance, (3) double-stance, (4) back-stance, and (1)

relaxed again (shown with the numbers above and below the

figures).
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environments inside the human body, and the adapta-

tion of the robot controller parameters to these envir-

onments in a small number of experiments;

3. implementation of an automated experimental plat-

form that runs and evaluates the physical learning

experiments repeatably and reliably without human

intervention and simulated environments;

4. comparison and evaluation of four different TL meth-

ods within the context of GP hyperparameters on the

learning efficiency of BO on the small-scale soft

robots;

5. generation of five benchmark datasets consisting of

the exhaustively parsed controller parameter space

involving 3,750 different physical experiments for

three different robots and three different walking sur-

faces that would allow further comparison between

different optimization methods, which is available at

https://github.com/sozgundemir/

softrobotwalkingdataset

The organization of this paper is as follows. We

describe the design of the robotic system, the walking gait,

and the properties of the task environments in our experi-

ments in Section 2. Section 3 describes the learning

approach with the details on the BO, GP, and TL methods.

In Section 4, we present the experiments on generating the

benchmark datasets, comparing the TL methods, and

learning the walking gait in different task environments.

We discuss the experimental results and conclude our

work in Section 5.

2. Experimental robot system

2.1. Robot design and fabrication

We follow the methods and materials reported in Hu et al.

(2018) and our previous work (Culha et al., 2020) and fab-

ricate three magnetic soft millirobots with a 1:1 body mass

ratio of Ecoflex 00-10 (Smooth-On Inc.) and neodymium–

iron–boron (NdFeB) ferromagnetic microparticles with

around 5m m diameter (MQP-15-7, Magnequench). We

place this pre-polymer mixture on a methyl methacrylate

plate and cut the robots out of the cast using a high-

resolution laser cutter (LPKF Protolaser U4) after the

polymer is cured. Our robots have the final dimensions of

length L = 3:7 mm, width w = 1:5 mm, and height

h = 185m m as shown in Figure 1(a). We separately fold

the robots around a cylindrical rod with a circumference

equal to L and magnetize them within a magnetic field

with a magnitude of 1:8 T and orientation of 458 measured

counterclockwise from the y-axis. Once the robots are

unfolded from the rod, the magnetic particles maintain

their magnetization orientation forming a circular profile

along the longitudinal axis of the robot body. We use these

robots (i.e., robots 1, 2, and 3), which have the same nom-

inal material properties and dimensions, in the rest of our

experiments.

2.2. Walking gait definition

The walking gait of our robot is composed of four consec-

utive quasi-static states that are inspired by the planar

quadrupedal bounding (Alexander, 1984) and a caterpillar

inching motion (Trimmer and Lin, 2014). These states are

depicted as (1) relaxed, (2) front-stance, (3) double-stance,

and (4) back-stance as shown in Figures 1(c)–(f). We con-

trol four parameters to generate the walking gait: the maxi-

mum magnetic field magnitude (Bmax), the frequency of

the actuation cycle (f ), and two magnetic field orientation

angles (a1 and a2) measured counterclockwise from the y-

axis. The plots in Figures 1(c)–(e) show the change of the

control parameters during a single period of the motion for

Bmax = 10 mT, f = 11 Hz, a1 = 308, and a2 = 608, which

are adopted from the hand-tuned parameters reported in

Hu et al. (2018). At the beginning of a single gait period,

the robot starts at a relaxed state for 0 ł jBjł 4 mT. The

robot tilts forward when a = a1 and jBj increases from 4

mT to Bmax = 10 mT. Although jBj remains constant at

Bmax, the orientation of the magnetic field changes from

a1 to a2 causing the robot to initially switch to the double-

stance state and then to the back-stance state when a = a2.

Then, jBj decreases while keeping the orientation of the

magnetic field constant, and the robot gradually switches

back to the relaxed state. For jBj\4 mT, the robot

assumes the relaxed state, and a single period of walking

actuation ends when jBj= 0 mT. We reset B at the end of

every gait cycle to avoid jerky motion when a changes

from a1 to a2. In our experiments, the relaxed state is

never skipped but its duration changes according to f . The

consecutive images from a single walking gait period are

shown in Figure 1(f).

2.3. Actuation and feedback setup

We place our magnetized soft robot along the y-axis of the

magnetic coil setup consisting of three orthogonal pairs of

custom-made electromagnets (see Figure 1(b)) that can

generate a 3D uniform magnetic field within a 4× 4× 4

cm 3 workspace with a maximum value of 15 mT. We

modulate the magnetic field on the y–z plane that coincides

with the center of the test environment by controlling the

electric currents running through the electromagnetic coils

with six motor driver units (SyRen25) and an Arduino

microcontroller, which runs at 1.2 kHz operation fre-

quency to compute the analog readings received from the

current sensors, control the motor drivers and perform all

necessary communications with the master PC for each

single control cycle of 0.83 ms. We regularly calibrate the

magnetic actuation matrix inside the workspace, i.e., the

mapping between the applied electric current and the gen-

erated magnetic field, to maintain reliable and repeatable

experiments.

We track the robot’s gait using two high-speed cameras

(Basler aCa2040-90uc, shown in Figure 1(b)). The first

camera running at 120 frames per second (fps) is placed
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orthogonal to the axis of robot motion (i.e., y–z axis of the

controller). A tracking algorithm, whose pseudo-code is

given in Appendix B, uses this camera to detect and evalu-

ate the robot’s motion to identify if the robot is moving

according to the walking gait definition given in Section

2.2. The second camera running at 60 fps has an isometric

view of the test scene and is used to measure the distance

traveled by the robot following the perspective correction

of the captured image. In every experiment, we calculate

the stride length of the robot by tracking the average dis-

tance covered by its center of mass in five consecutive

steps. At the end of every experiment, the robot is moved

back to its original starting position automatically with the

tracking and the actuation commands. See Extension 1 for

the gait detection, position tracking, and repositioning for

robot 3 walking on paper.

The learning process and image processing run on a

master PC, and all the communication tasks between dif-

ferent elements of the robotic system (e.g., image capture

and electric current control) are executed on Robot

Operating System (ROS) architecture, which allows our

system to be scalable for further extensions. The auto-

mated experimental platform implemented in our work

allows the physical experiments to be executed with mini-

mum human intervention; therefore reducing the human-

based disturbances on the robot and the test surfaces.

Without these interactions that can cause significant

alterations on the soft millirobots, the physical learning

experiments can be maintained repeatably and reliably.

2.4. Task environments

In this study, we use a wide range of different task envir-

onments to test the efficacy of our adaptive learning strat-

egy in comparison with the limited surface experiments in

Culha et al. (2020). Our goal is to emulate the in-air and

liquid-immersed surface walking environments that a mag-

netic soft millirobot might experience during future medi-

cal operations inside the human body. To capture some of

the characteristic properties of the target tissues and body

fluids, we fabricate different task spaces and vary their :

(1) surface adhesion, (2) surface roughness, and (3) the

liquid medium viscosity properties. For each of these prop-

erties, we experimentally identify the range of values that

allow successful walking gaits and systematically test the

robots in these specific ranges.

We fabricate a set of flat substrates with different sur-

face adhesion strengths by using different materials. This

set of substrates consists of paper, polystyrene (PS), and

modified polydimethylsiloxane (PDMS). PDMS substrates

are prepared by mixing Sylgard184 (Dow Corning) with

its curing agent to a 10:1 ratio, degassing, and curing at 90

C for 1 hour. PDMS is modified by adding ethoxylated

polyethylenimine (80% solution, Sigma Aldrich) prior to

mixing and curing to increase its adhesive properties

(Jeong et al., 2016). A volume of 0 (PDMS-0), 1 (PDMS-

1), and 2m; (PDMS-2) of polyethylenimine solution was

added per 1 g of silicone elastomer base. The adhesion

between the walking surfaces and the robot is measured in

a TA Instruments Discovery HR-2 rheometer with a

custom-built adhesion setup (at loading and unloading

speeds of 50m m s �1). The resulting set of flat substrates

resulted in walking surfaces with adhesion strengths

between 1 to 10 kPa as shown in Figure 2(a).

Walking surfaces with changing roughness were pre-

pared by replicating the surface texture of different grits of

sandpaper. First, we fabricate the negative molds of the

original surfaces by pressing a glass plate with a layer of

uncured vinylsiloxane polymer (Flexitime medium flow,

Heraeus Kulzer GmbH) onto the original surfaces. After

curing the molds for 5 minutes at room temperature, we

removed them and produced positive replicas of the origi-

nal surfaces using clear casting epoxy (EpoxAcastTM 690,

Smooth-On Inc., 10:3 ratio by weight) onto the mold, with

another glass plate pressed on top. At the end of 24 hours

of curing time, we removed the positive replicas from the

molds. According to surface profile examination of the

replicated surfaces (Keyence VKX260K), surface rough-

ness values Rq (root-mean-square height) changed between

7.5 and 77:2m m as shown in Figure 2(b).

Last, we submerged the robots in different Newtonian

fluids while walking on a flat surface to investigate the

effect of bulk liquid medium viscosity on the walking per-

formance. The Newtonian fluids were prepared by mixing

different ratios of water and glycerol, and their viscosity is

measured in a TA Instruments Discovery HR-2 rheometer.

We analyze task environments with medium viscosity

ranging from 1 to 90 cP as shown in Figure 2(c).

Fig. 2. The type and range of task space properties investigated

for the robot’s walking gait. (a) Adhesion strength of different

surfaces ranges between 1 and 10 kPa. (b) Roughness values of

different surfaces that are named after the grit scale of their

template sandpapers. The inset figures from the profilometer

scans represent the two extremes of the roughness range (i.e.,

Rq, P800 = 7:5m m to Rq, P60 = 77:2m m). (c) Viscosity values of

the test fluids range between 1 and 90 cP where the robot is

submerged while performing the walking gait. Fluids are named

after their cP values. The sketches (d)–(f) aim to visualize the

task space conditions during walking.
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3. Learning approach

We adapt the learning approach from our previous work

(Culha et al., 2020) that aims to optimize the walking gait

controller parameters to maximize the stride length S of

the robot. Here we define the reward function as

S : Y! R ð1Þ

which maps the parameter set u = ½Bmax, f ,a1,a2� to sca-

lar reward values (i.e., the stride length performance of a

robot). According to the definition of the reward function,

we formulate the parameter learning as the (global) opti-

mization problem

u�= argmax
u2Y

S(u) ð2Þ

where Y denotes the complete search space, u is the para-

meter set, and S(u) is the average stride length perfor-

mance of the robot for a given u.

We define the range of the controller parameters based

on the findings in Hu et al. (2018) and the physical limita-

tions of our magnetic actuation setup. Accordingly, Bmax

is defined between 5 and 12 mT, and the walking fre-

quency, f , ranges from fmin = 0:5 Hz to fmax = 20 Hz. We

limit a1 and a2 to ½0, 70�8 and ½30, 90�8, respectively, and

select values that satisfy a2.a1 to generate the walking

gait in Figures 1(c)–(f). We use a step size of 1 mT for

jBj, 58 for each a, and a variable step size of 0.5 Hz for

f \2 and 2 Hz for f ø 2 Hz, which yield a total number of

15,600 possible parameter values in Y.

3.1. Gaussian processes

The magnetic soft millirobots in our paper did not have

accurate models for kinematics or dynamics (i.e., we

demonstrated the model inaccuracy of the original work of

Hu et al. (2018) in our previous study in Culha et al.

(2020)), therefore, it is necessary to approximate the

reward function based on the data collected from physical

experiments. However, the physical data has inherent

uncertainty owing to the noise in the measurements and

the variations during the experiments. To include these

uncertainties in the model, overcome the sparsity in the

data, and make probabilistic predictions at unobserved

locations, we represent the reward function S(u) using

GPs following the study in von Rohr et al. (2018):

S(u);GP(m(u), k(u, u0)) ð3Þ

where m(u) is the prior mean and k(u, u0) is the kernel

function defining the covariance between S(u) and S(u0)
for u, u0 2 Y. However, as S(u) can only be measured

with noise, we define the observed stride length ~S as

~S(ui)= S(ui)+ ni ð4Þ

where ni is zero-mean Gaussian noise with variance s2
n for

each measurement i.

During one run of BO, the GP model is sequentially

updated with ~S(u) observed from experiments. We define

one learning run as a run of BO until the desired stopping

criterion is satisfied (e.g., a fixed number of experiments

is reached).

From the experimental data D = fui, ~S(ui)gN
i = 1, where

N denotes the number of experiments in D, the stride

length of the robot for an unobserved u can be predicted

using the posterior mean and variance as

mpost(u)= m(u)+ kT (u)K�1y ð5Þ

s2
post(u)= k(u, u)� kT (u)K�1k(u) ð6Þ

Spost(u)jD;N (mpost(u),s2
post(u)) ð7Þ

where k(u), y 2 RN with ½k(u)�i = k(u, ui), yi = ~S(ui)�
m(ui), and K 2 RN ×N with Ki, j = k(ui, uj)+ di, js

2
n, where

di, j is the Kronecker delta.

We select the squared exponential as the kernel func-

tion in the GPs, which is defined in (Duvenaud et al.,

2011) for multi-dimensional cases as

kSE(u, u
0)= s2

f exp �
Xdc

u = 1

(uu � u0
u
)
2

2(lu
c )

2

 !
ð8Þ

where lc 2 Rdc is the length scales that defines the rate of

variation in the modeled function for each dimension of

the parameter space, i.e., lu
c for u 2 fBmax, f ,a1,a2g.

Roughly speaking, long length scales are used to model

slowly-varying functions and short length scales are used

to model quickly-varying functions. The signal variance

s2
f describes the width of distribution, e.g., high s2

f means

higher uncertainty in the predictions of the unobserved u.

We implement the GP model in our experiments using the

libraries provided by GPy (GPy, 2012).

3.2. Bayesian optimization

We use BO to select the parameter set unext to be tested in

the next step of the learning run using the acquisition func-

tion aacq(u) as

unext = argmax
u2Y

aacq(u): ð9Þ

In this study, we choose the expected improvement (EI)

as the acquisition function aacq(u) due to its better perfor-

mance compared with its alternatives as demonstrated in

von Rohr et al. (2018). EI seeks the parameter set for the

next step where the EI in reward function is the highest

compared with the previously collected data and is defined

in Jones et al. (1998) as

aacq(u)=E½max (0, (S(u)� ~S(u�)))� ð10Þ

where ~S(u�) is the highest reward function value collected

so far. Analytical solution of Equation (10) is given in

Brochu et al. (2010) as

1336 The International Journal of Robotics Research 40(12-14)



aacq(u)= (m(u)� ~S(u�)� j)F(Z)+ s(u)f(Z) ð11Þ

where F and f are the Gaussian cumulative density and

probability density functions, respectively. The term Z is

described as Z = Z(u)= (m(u)� ~S(u�)� j)=s(u), with

m(u) and s(u) computed from Equations (5) and (6). The

two terms in Equation (11) define the exploitation and the

exploration weights of the BO, respectively. The balance

between these two terms is controlled by the hyperpara-

meter j. As j gets higher, BO focuses more on exploration

and seeks the next parameter set in regions with high pre-

diction uncertainty. In contrast, BO focuses more on

exploitation and selects the next parameter set within a

close range to already explored regions. As the goal of our

study is to adapt to task spaces by increasing the likeli-

hood of finding more controller parameter sets that yield

successful walking gaits under uncertainty, we choose

j = 0:1 to increase the exploration tendency of the BO in

our experiments.

3.3. Transfer learning

In this study, we compare four different methods of TL on

our walking gait experiments: (1) transfer of all GP hyper-

parameters, s2
n, s2

f , and length scales lc for each dimen-

sion of the parameter space R
dc , i.e., lu

c for

u 2 fBmax, f ,a1,a2g; (2) transfer of only the length scales

lc; (3) transfer of prior mean information m(u); and (4) the

hybrid combination of length scales lc and m(u).

3.3.1. Transfer of GP hyperparameters. The choice of the

types and values of GP hyperparameters influence the

regression of the GP (Chen and Wang, 2018) and their

transfer from prior models can change the dynamics of the

learning process (Patacchiola et al., 2020; Wang et al.,

2020). The hyperparameters we choose to investigate as a

part of the GPs in this study can be listed as the noise in

the collected data s2
n, the signal variance s2

f , and the

length scales lc. We start the BO learning by initializing

the s2
n to the maximum variance found in the repeated

experimental results in our previous work in Culha et al.

(2020), and setting the signal variance s2
f to the square of

half of the body length of the robot so that the highest pos-

sible reward value (i.e., L = 3:7 mm) remained inside the

95% confidence interval of the prior. We also set the

length scale values lu
c to a quarter of the total range of each

corresponding parameter. After starting the BO runs with

these initial values, we use the log marginal likelihood

estimation (Rasmussen and Williams, 2006)

log p(~Sju, lu
c ,s

2
n,s

2
f )=�

1

2
(~S � m(u))TK�1(~S � m(u))

� 1

2
log jKj � N

2
log 2p

ð12Þ

to simultaneously optimize the GP hyperparameters

based on the collected data during the learning runs. We

use these estimates of the selected hyperparameters as

one of the TL methods in the following experiments in

Section 4.3.

3.3.2.Transfer of prior mean information. In addition to

the kernel, the prior mean m(u) must be chosen at the

beginning of a BO run as well. Often, constant zero mean

(i.e., m = 0) is the default choice as an uninformed prior

mean function for maximization problems (Chen and

Wang, 2018). For the millirobot learning problem herein,

we investigate the transfer of information from previous

learning runs by setting the prior mean to the posterior

mean of a previously trained GP model, such as from a

different robot. In this way, we can approximately transfer

the topology of the target function between different test

scenarios, which is reasonable as long as the differences

between the robots and the environments do not signifi-

cantly alter the function shape.

3.3.3.Hybrid transfer. Previous methods can be combined

and both the optimized estimation of the GP hyperpara-

meters and the prior mean information can be transferred

between the BO experiments. In this study, we also inves-

tigate the combination of the estimated length scales lc and

the prior mean information m(u) and their transfer between

the test cases in Section 4.3.

4. Experimental results

Our study aims to use BO and GPs to demonstrate adapta-

tion to different task spaces while experimentally optimiz-

ing the stride length of the soft millirobots whose walking

performances are prone to fabrication-, material-, and

interaction-based reproducibility issues that cannot be suc-

cessfully predicted with kinematic models. In that sense,

we focus more on exploring a variety of walking patterns

under changing task space conditions rather than continu-

ously optimizing a specific walking gait performance.

Accordingly, we design the experiments to highlight the

influence of BO and GPs and TL methods on increasing

the average performance of finding successful walking

gaits, i.e., gaits strictly following the consecutive states

described in Section 2.2 that also yield sub-optimal stride

length performances, during the limited number of learn-

ing runs, instead of only finding the optimum controller

parameters.

We begin with using an exhaustive search approach to

generate benchmark datasets for the walking gaits on five

different test scenarios using our millirobots in Section

4.1. Here, we limit the controller parameter space to two

dimensions and only explore the a1 and a2 parameters

while experimenting with three robots on a flat paper sur-

face and with one robot (i.e., robot 3) on two additional

different walking surfaces. The results of the exhaustive
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search show the overall structure of the walking gait func-

tion based on the range of the two controller parameter

values. This statistical information serves as benchmark

data to compare the learning efficacy of the BO and differ-

ent TL methods in Sections 4.2 and 4.3. We choose the

most effective TL method guided by the experiments on

the benchmark datasets and apply it to a new set of task

adaptation experiments in Section 4.4. Here we use a sin-

gle robot on three different task spaces with a wide range

of changing surface adhesion and roughness, and medium

viscosity. In these experiments, we expand the controller

space back to four dimensions (i.e., Bmax, f , a1, and a2),

and optimize the walking gait with the BO and the chosen

TL method within a limited number of learning runs.

4.1. Generation of the walking gait benchmark

datasets

In our previous work in (Culha et al., 2020), we observed

that the soft millirobots we adopted from (Hu et al., 2018)

experienced additional material degradation over long

repeated experiments that altered their gait performances.

While we investigate the influence of BO and TL methods

on the improvement of learning efficiency in Section 4.2

and Section 4.3, we want to minimize this material degra-

dation effect on the walking gait. That is why here we use

an exhaustive search approach and generate five different

benchmark datasets that cover the walking gait function

space necessary for the BO and TL methods investigations.

To this end, we test three different robots (i.e., robot 1, 2,

and 3) on a flat paper surface and a single robot (robot 3)

on two additional surfaces: PDMS-0 and P800-grit sandpa-

per replica.

To explore the walking gait function space on these five

test cases, we constrain the controller space into two

dimensions by using a constant Bmax = 10 mT and f = 1

Hz, and changing the a1 and a2. We choose values from

the set ½0, 70�8 for a1 and ½30, 90�8 for a2 with a step size

of 58 that meet the condition a2.a1, which consequently

generate 150 different controller parameter pair values.

For each of these pairs, we repeat the experiments five

times; hence, generating 750 physical experiments for

each test case and report the results in Figures 3(a)–(e).

The constrained dimensions reduce the necessary experi-

ments from 390,000 (i.e., 5 repetitions for each test case

using 15,600 parameter value sets) to 3,750 for the exhaus-

tive search, and significantly avoid the possible material-

degradation over prolonged experiments.

In these experiments the robots do not necessarily fol-

low the gait definition in Section 2.2, therefore we describe

these resulting values as ‘‘displacement measurements,’’S0.
To filter out the non-walking gaits of the robot from this

dataset, which can be seen at the beginning of Extensions

2, 3, and 4 for different task spaces, we use our gait track-

ing feedback system defined in Section 2.3 and evaluate

every test result to penalize the a controller pairs that do

not generate the desired walking gait. Accordingly, we

obtain the average stride length performances, S, of the

successful gaits in Figures 3(f)–(j). These results show that

the stride length performances are limited up to S’2:4
mm for the successful walking gaits, and the penalized

motions with higher displacements (S0.S) do not comply

Fig. 3. Experimental displacement measurements S0 in five test case scenarios for (a) robot 1 on paper, (b) robot 2 on paper, (c)

robot 3 on paper, and robot 3 on (d) PDMS-0 and (e) P800 surfaces. Each figure represents 5 repetitions for 150 different controller

value pairs, yielding 750 physical experiments. The displacement measurements are filtered out with the tracking algorithm to

identify the desired walking gaits and the corresponding average stride length S values for the benchmark datasets (f) robot 1 on

paper, (g) robot 2 on paper, (h) robot 3 on paper, and robot 3 on (i) PDMS-0 and (j) P800 surfaces.
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with the walking gait definition. The statistical information

collected from the physical experiments in these five test

cases (shown in Figures 3(f)–(j)) constitutes our bench-

mark datasets that we use in the following BO and TL

investigations. The optimum controller parameter sets

found by the exhaustive search in the 2D function space

are reported in Table 1. We use the mean and standard

deviation values of these exhaustive search results to sam-

ple the stride length of the robots for the given a controller

parameter sets while comparing the performances of dif-

ferent TL methods. The benchmark data is available online

and can be accessed at https://github.com/sozgundemir/

softrobotwalkingdataset.

4.2. Learning the walking gait with the

‘‘standard’’ BO

We initially test the walking gait learning with a BO

approach on the benchmark datasets, where the prior mean

information is set to zero (i.e., m(u)= 0) and the four

hyperparameters are set to initial values described in

Section 3.3.1 without inheriting any other prior informa-

tion. We utilize this approach, which we refer to as ‘‘stan-

dard BO’’ in the rest of this study, for the two controller

parameters a1 and a2 and apply it separately to the bench-

mark datasets for the five different test cases (i.e., robots

1–3 on a flat paper surface, and robot 3 on the PDMS-0

and P800 surfaces). To be able to directly use the mean

and standard deviation information from the exhaustive

search results, we configure our BO to explore the same

discrete controller parameter set space used in Section 4.1.

We perform 100 independent learning runs with each

involving 100 iteration steps for the five test cases. One

iteration step of a learning run involves three steps:

1. BO selects a new parameter set u that maximizes the

acquisition function based on the GP model;

2. for the selected controller parameter pair, the corre-

sponding stride length performance is sampled from

the normal distribution defined by the mean and stan-

dard deviation values found in the relevant benchmark

dataset;

3. the learning system updates the GP model using this

sampled data and prepares for the next iteration step

of the learning run.

We report the median of the learning results with the

upper and lower quartiles in Figure 4. These values repre-

sent the normalized gait performance Ŝ = ~S=Sexh, where

Sexh is the mean of the stride length performances of the

robots for the best a controller parameters reported in

Table 1. For the first four of the five test cases, the stan-

dard BO approach finds the optimum gait controller para-

meters in less than an average of 25 iterations out of 100

independent learning runs. For the robot 3 walking on the

P800 surface, the BO finds approximately 74% (Ŝ’0:74)

of the optimum stride length performance as shown in

Figure 4(e). The results show that the standard BO starts

the learning without any prior information and occasion-

ally finds controller parameter sets that yield Ŝ = 0 in the

first 15 iteration steps. The non-monotonic optimization

results in these initial steps are expected due to the statisti-

cal exploration nature of our BO approach. After 25 itera-

tion steps, the BO maintains the exploration in the close

vicinity of the optimum controller parameters it finds so

far for all the test cases (i.e., Ŝ’1 for robots 1–3 on paper

and robot 3 on PDMS-0, and Ŝ’0:74 for robot 3 on P800).

The variation of the generated walking gait performances

is bounded by the standard deviations reported in Table 1.

The exact normalized performance results for the standard

BO approach can also be seen in Table 2.

4.3. Comparison of transfer learning methods on

the benchmark datasets

In this study, we extend our previous investigation on the

role of TL in learning efficiency (Culha et al., 2020) and

compare four different methods while optimizing the gait

controllers of our soft millirobots. Similar to Section 4.2,

we apply our BO learning to the benchmark datasets gen-

erated in Section 4.1, where the controller parameter space

is limited to two dimensions with a1 and a2. However,

unlike the ‘‘standard’’ BO, here we initialize the learning

runs of the robots in all test cases with different types of

Table 1. Best performing a controller parameter sets found by the exhaustive search and the corresponding stride length results Sexh

Test case Controller parameters* Stride length Sexh (mm) (average 6 SD)

a1(8) a2(8)

Robot 1 on Paper 15.0 70.0 1.75 6 0.04
Robot 2 on Paper 0.0 70.0 1.91 6 0.12
Robot 3 on Paper 5.0 70.0 2.43 6 0.12
Robot 3 on PDMS-0 30.0 85.0 1.83 6 0.09
Robot 3 on P800 35.0 70.0 1.77 6 1.37

*Bmax = 10 mT and f = 1 Hz in all cases.
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prior information learned from the robot 3 walking on a

flat paper surface. In the remaining parts of this section,

we refer to this prior information source as the source

robot. The four different TL methods we compare are: (1)

transfer of all GP hyperparameters (HP-4 transfer), (2)

transfer of only the length scales (HP-lc transfer), (3) trans-

fer of prior mean information (mean transfer) and (4) the

hybrid combination of length scales with mean information

(hybrid transfer). All the experiments shown in this section

are the result of 100 independent learning runs with each

having 100 iterations for all the test cases. The values for

the hyperparameters used in each of the TL methods can

be found in Appendix C.

4.3.1. HP-4 transfer. We initially transfer all of the four

GP hyperparameters (i.e., noise in the collected data s2
n,

signal variance s2
f , and length scales lu

c for u 2 fa1,a2g)
that are optimized with the log marginal likelihood estima-

tion in (12) from the learning runs of the source robot to

all other five test cases. Here, we initialize the BOs with

this prior information and start the learning experiments.

The normalized stride length performances, Ŝ, of the BO

learning with this TL method (depicted as ‘‘HP-4’’) are

shown in comparison with the ‘‘standard’’ BO approach in

the first column of Figure 5. These results show that the

transfer of all of the four hyperparameters improves the

learning performance in terms of decreasing the number

of iteration steps to find the optimum controller para-

meters within these experiments. For robot 1 on paper and

robot 3 on P800, the BO manages to find the performances

achieved by the ‘‘standard’’ approach in less than half of

the iteration steps, which are shown in Figure 5(a) and (q),

respectively. For robots 2 and 3 on paper, and robot 3 on

PDMS-0 (as seen in Figure 5 (e), (i), and (m) ), the BO

with this TL method does not reach the performances pre-

viously achieved by the ‘‘standard’’ BO. After finding the

optimum performances, the BO maintains the exploration

in their close vicinity for all the test cases.

4.3.2. HP-lc transfer. Second, we investigate the transfer

of only the two length scale hyperparameters lu
c for

u 2 fa1,a2g optimized by the source robot. We run the

BO learning experiments after all the length scale para-

meters are initialized with the transferred lc values. The

results in the second column of Figure 5 show that this TL

method (depicted as ‘‘HP-lc’’) worsens the learning per-

formance as it increases the number of iteration steps for

the BO to find the optimum performance parameters for

Fig. 4. Performance of the standard BO for (a) robot 1 on paper, (b) robot 2 on paper, (c) robot 3 on paper, (d) robot 3 on PDMS-0,

and (e) robot 3 on P800. The stride length performances are normalized with respect to Sexh given in Table 1 for easier comparison

between tests. Each figure shows the statistical results as median, and upper and lower quartiles from 100 independent BO runs with

each consisting of 100 iterations.

Table 2. Comparison of the transfer learning methods.

Robot
Number

Test
Surface

Type Performance Convergence
Step*(%) **(%)

1 Paper Standard 95.83 $ 20
HP-4 95.35 �0.51 9
HP-lc 96.17 + 0.35 28
Mean 97.20 + 1.42 2
Hybrid 97.34 + 1.57 3

2 Paper Standard 99.63 $ 21
HP-4 86.32 �13.36 100
HP-lc 99.62 �0.01 29
Mean 98.44 �1.19 3
Hybrid 99.40 �0.23 6

3 Paper Standard 95.60 $ 20
HP-4 81.25 �15.02 100
HP-lc 98.03 + 2.54 27
Mean 98.81 + 3.36 0
Hybrid 98.23 + 2.75 0

PDMS-0 Standard 98.38 $ 25
HP-4 86.90 �11.68 100
HP-lc 97.74 �0.66 36
Mean 96.54 �1.87 14
Hybrid 96.68 �1.73 8

P800 Standard 73.84 $ 30
HP-4 77.61 + 5.11 14
HP-lc 80.00 + 8.33 30
Mean 91.12 + 23.40 8
Hybrid 84.47 + 14.40 12

*Relative performance with respect to the optimum exhaustive search results.
��Relative performance with respect to the standard BO learning

approach.
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all the cases. However, in comparison with the previous

‘‘HP-4’’ method, the transfer of only the length scale

hyperparameters allows the BO to explore the gait perfor-

mances achieved by the standard BO approach.

4.3.3. Mean transfer. As the third method, we transfer the

posterior mean information, m(u), from the source robot as

the prior information for the robots in the test cases. Here,

we set all of the other GP hyperparameters to the initial

Fig. 5. Comparison of each TL method are shown in separate columns in terms of normalized stride length performance Ŝ with the

standard BO approach on five test cases (first row ) robot 1 on paper, (second row ) robot 2 on paper, (third row ) robot 3 on paper,

(fourth row ) robot 3 on PDMS-0, and (fifth row ) robot 3 on P800. The grayscale plots represent the standard BO replicated from

Figure 4. Straight lines represent the median and the shaded regions between dashed lines show the upper and lower quartiles. Each

figure shows the statistical results from 100 independent BO runs with each consisting of 100 iterations.
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values as described in Section 3.3.1 and restart the BO

learning experiments. The results in the third column of

Figure 5 show that when the BO learning starts with the

prior mean information (depicted as ‘‘Mean’’), it achieves

the average gait performances found by the standard BO

(Ŝ’1) in fewer iteration steps for the first four test cases.

Although the median of the achieved Ŝ remains close to

the standard BO results for robot 3 on P800, this method

also allows the exploration of the controller parameter sets

those yield performances close to the optimum results

from the exhaustive search as shown in Figure 5 (s).

4.3.4. Hybrid transfer. Finally, we adopt a hybrid

approach and transfer the posterior mean information,

m(u), together with the two length scale hyperparameters

lu
c for u 2 fa1,a2g, whose results are shown in the last

column of Figure 5 (depicted as ‘‘Hybrid’’). The hybrid

transfer improves the learning run performance by

decreasing the number of iteration steps to find the opti-

mum performing parameter sets found by the standard

BO. Similar to the results in Figure 5 (s), the hybrid trans-

fer also allows robot 3 on P800 to investigate parameter

regions that yield performances close to the optimum

results from the exhaustive search.

The comparative performance results of the standard

BO and the four TL methods for each of the five test cases

are reported in Figure 6 and Table 2. Owing to the statisti-

cal and explorative nature of the BO, the stride length per-

formances do not monotonically increase at every

consecutive iteration step (as also visible in Figure 5).

That is why, to provide a clear comparison between our

methods in Figure 6, we identify the iteration steps that

show the ‘‘best so far’’ performance during the learning

run of each approach. The first row, Figure 6(a)–(e), com-

pares these methods in terms of the normalized error of

the achieved stride length performances during the BO

learning runs (e= 1� Ŝ). For the first four cases, it can be

seen that except for the ‘‘HP-4’’ method, the other three

transfer methods and the standard BO manage to consis-

tently explore the optimum stride length performances

(e’0) as shown in Figure 6(a)–(d). The ‘‘HP-4’’ method

does not allow the BO to find the optimum controller

parameters and the results remain approximately 20%

below these optimum values for three of the test cases,

which are also shown in Figure 6(b)–(d). The ‘‘HP-lc’’

method shows similar performances with the standard BO

in terms of the initial and the final performance error.

Both the ‘‘Mean’’ and ‘‘Hybrid’’ transfer methods allow

the BO to generate comparable final performances, while

the mean transfer method typically starts with significantly

lower error compared with the hybrid approach. For the

last test case (i.e., robot 3 on P800, Figure 6(e)) we can

see that the standard BO approach only manages to

explore gaits that are 74% (Ŝ’0:74) of the optimum gait

performance. Every TL method increases the performance

yield of the BO learning, with the ‘‘Mean’’ transfer out-

performing all other methods by exploring gaits that have

Ŝ’0:91, or e’0:09, on the surface of P800-grit sandpaper

Fig. 6. Performance comparison of standard BO and four TL methods on five test cases. (a)–(e) Normalized performance error e
with respect to the optimum gait performances from the exhaustive search results (Table 1). Each figure shows the ‘‘best-so-far’’

performance results over 100 iterations. (f)–(j) Comparison of resulting convergence step of standard BO and TL methods. The

convergence steps of the TL methods are calculated as the iteration step achieving the performance level of the standard BO

approach. Maximum iteration step of 100 is reported for the cases that cannot reach the standard BO level.
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in terms of the final performance. The comparison

between the standard BO and the TL methods in terms of

achieved Ŝ performances are given in detail in Table 2.

The second row, Figure 6(f)–(j), represents the learning

efficiency performance comparison in terms of the itera-

tion steps needed to explore the best performance by the

standard BO and to achieve standard BO level perfor-

mance by the four TL methods. We describe this explora-

tion performance with ‘‘convergence steps,’’ which is

calculated by finding the performance value that stays

within the 5% band of the averaged remaining steps.

Normally, a monotonic convergence is not expected from

the statistical and explorative BO learning. However,

viewing the learning runs with the ‘‘best-so-far’’ evalua-

tion method allows us to represent the required iteration

steps to achieve comparable performance, and to capture

the relative data efficiency of the TL methods.

Accordingly, we can see that the ‘‘HP-4’’ method fails to

achieve standard BO level performance for the three cases

(Figure 6(g)–(i)) as its convergence steps are equal to the

number of iteration steps in the experiments. The ‘‘HP-lc’’

method shows comparable results with the standard BO

for all the cases (Figures 6(f)–(j)) in terms of the conver-

gence steps. In comparison, both the ‘‘Mean’’ and

‘‘Hybrid’’ TL methods attain to the standard BO level per-

formance significantly faster (i.e., fewer convergence

steps) in all the test cases. The details of the convergence

steps is given in the last column of Table 2.

As the ‘‘Mean’’ TL method outperforms the standard

BO and other three TL methods by finding better perform-

ing parameter sets in fewer iterations, we select it to use

for task space adaptation experiments in Section 4.4.

4.4. Adaptation to task spaces

The task environment is more susceptible to dynamic

changes than the robot morphology, especially for medical

operations inside the human body. Therefore, a quick

adaptation of the robot controller is important to maintain

successful robot task handling. In the following experi-

ments, we investigate the learning efficiency of our BO

approach while focusing on the three physical properties

that may dynamically change during the walking task of

our soft millirobots in future in vivo operations, which are

(1) surface adhesion, (2) surface roughness, and (3)

medium viscosity.

Here, we expand the controller parameter space explo-

ration back to four dimensions by including the magnetic

field magnitude Bmax and the actuation frequency f . To

efficiently learn the controller parameters in this higher

dimensional search space, we utilize the prior mean trans-

fer application (i.e., ‘‘Mean’’ TL), which is shown to be

the best performing TL method for our experimental sce-

nario in Section 4.3. However, as the source robot in pre-

vious experiments explored only two dimensions of the

controller space, we generate the posterior mean mpost(u)
required for the following experiments by performing a

new set of physical experiments with the robot 3 on a flat

paper surface. For these experiments, we run the standard

BO for 156 iteration steps (i.e., 156 different controller

parameter sets), which corresponds to 1% of the complete

controller parameter space with given step sizes in Section

3. We use the posterior mean optimized at the end of these

learning runs as the prior mean information for all the task

space experiments. We only test robot 3 in the following

task space adaptation experiments.

Again, we compare the learning efficiency of the stan-

dard BO with the prior mean transfer method on all the

task spaces defined in Section 2.4. Here, the objective of

these learning runs is to adapt to dynamic task spaces and

learn the optimized controller parameters in as few experi-

ments as possible especially for future medical operations.

To find the number of learning steps sufficient enough for

BO to find the desired walking gaits, we used the results in

Figures 4, 5, and 6, which involve approximately 250,000

data points. These results show that the BO finds the opti-

mized controller parameters that generate desired walking

gaits consistently in less than 20 steps for different robots

and walking surfaces. Therefore, we limit the number of

steps of a learning run to 20 experiments (i.e., iteration

steps), and perform three independent learning runs with

the same initial conditions, yielding 60 experiments in

total. One step of the learning run involves five steps:

1. BO selects a new parameter set u that maximizes the

acquisition function based on the GP model;

2. the microcontroller initiates the physical experiment

and regulates the magnetic field based on the

selected u;

3. the cameras record the robot’s motion and measure

the average stride length performance ~S after

running the gait tracking system;

4. the learning system updates the GP model using the

newly collected data from the experiment;

5. the robot returns to its initial position for the next

experiment.

4.4.1. Surface adhesion. We initially test the robot on five

surfaces with different adhesion strengths reported in

Figure 2(a). Figure 7(a)–(d) show the walking gait perfor-

mances during the three independent learning runs on the

two ends of the adhesion range: paper (1.34 kPa) and

PDMS-2 (11.02 kPa). The left column (Figure 7(a) and

(c)) show the learning runs with the standard BO approach,

and the right column (Figure 7(b) and (d)) show the learn-

ing runs with the prior mean transfer method. The differ-

ence between these figures shows that the TL method

improves the learning runs by finding more of the control-

ler parameters that yield positive walking gait perfor-

mances. In addition, the BO with the TL manages to

explore these parameters in the earlier steps of the learning

runs compared to a standard BO approach. We represent
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the general influence of the mean transfer method on all

the adhesion surfaces with the standard interquartile range

(IQR) method in Figure 7(e). In this figure, the horizontal

lines represent the median of the generated ~S in 60 experi-

ments for each surface. These lines are surrounded by

boxes that show the upper and lower quartiles. The error

bars show the extremes in terms of the highest and lowest
~S performances and the circles represent the outlier ~S per-

formances. The results for the learning with standard BO

and BO with the chosen TL method are given side by side

for each test surface in Figure 7(e) and the exact values are

listed in Table 3. For example, we can see that the learning

runs with the standard BO on PS, PDMS-0, and PDMS-1

surfaces typically explore controller parameters that do not

yield successful walking gaits. In comparison, the BO with

the TL method explores numerous successful controller

parameters on these surfaces. The increased median lines

in Figure 7(e) provide evidence that the prior mean transfer

improves the learning of the BO in terms of increasing the

number of successful walking gait generating controller

parameters that are explored in a limited number of experi-

ments. See Extension 2 for a comparison between the

walking gaits on paper and PDMS-2, and Extension 5 for

the details of the independent learning runs for all the sur-

face adhesion experiments.

4.4.2. Surface roughness. Next, we test the same robot on

five surfaces with increasing roughness properties that are

reported in Figure 2(b). The walking gait performances

achieved during the learning runs for the two extreme sur-

faces, P800-grit (Rq = 7:488m m) and P60-grit

(Rq = 77:195m m) sandpaper replica are shown in Figure

8(a)–(d). Similar to the surface adhesion experiments, the

mean transfer method improves the learning performance

of the standard BO by increasing the number of explored

parameter sets that generate non-zero walking gait perfor-

mances. The comparative performances of the standard

BO and the mean transfer method for all the roughness

test surfaces are reported in Figure 8(e) and Table 4. See

Extension 3 for a comparison between the walking gaits

on P800 and P60, and Extension 6 for the details of the

independent learning runs for all the surface roughness

experiments.

4.4.3. Medium viscosity. Finally, we test our robot walk-

ing in eight different media with changing viscosity as

reported in Figure 2(c), and report the results for two

extreme cases, cP1 and cP90 in Figure 9(a)–(d). It can

be seen that the ability to explore a wide range of control-

ler parameter sets that generate walking gaits decreases for

both BO approaches for the high-viscosity fluids (cP .

35). However, the mean transfer method still manages to

increase the number of successful sets compared with the

Fig. 7. The learning of the controller parameters for the

changing adhesion properties of the test surfaces (upper row

paper, lower row PDMS-2) within 20 physical experiments in 3

independent learning runs (depicted as LR 1–3). Learning runs

with the standard BO in (a) and (c) are compared with the

learning runs with the mean transfer in (b) and (d). Overall

performances of the learning runs with the standard BO (left

bars) and the mean transfer method (right bars) reported with

box plots for all test cases (e).

Table 3. Comparison of the learning performances for changing

surface adhesion.

Test Surface Type Performance (mm)

Median IQR

Paper Standard GP-BO 0.00 1.59
Mean transfer 1.60 0.46

PS Standard GP-BO 0.00 0.00
Mean transfer 0.00 0.61

PDMS-0 Standard GP-BO 0.00 0.00
Mean transfer 1.60 0.75

PDMS-1 Standard GP-BO 0.00 0.00
Mean transfer 0.81 1.45

PDMS-2 Standard GP-BO 0.00 0.67
Mean transfer 1.07 0.46
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standard BO for all the media. The overall performances

of the standard and mean transfer approaches are reported

as box plots in Figure 9(e) and Table 5. These results are

consistent with the other two test surfaces that the TL

method allows the BO to explore more of the controller

sets that generate walking gaits against the changing task

space properties. See Extension 4 for a comparison

between the walking inside cP1 and cP90, and Extension 7

for the details of the independent learning runs for all the

medium viscosity experiments.

5. Discussion

The displacement measurements from the exhaustive

search experiments in Figures 3(a)–(c) show that even

though three identical robots are tested with the same con-

troller parameters on the same surface, they generate

different walking gait performances. These initial results

also confirm the observations related to performance

repeatability in our previous work (Culha et al., 2020).

Moreover, the influence of the task space on the robot per-

formance can be seen clearly from Figures 3(h)–(j), where

the adhesion and roughness differences between different

surfaces are reflected. These observations support the

necessity of a data-efficient controller learning system that

is robust to the robot performance variabilities caused by

the material, fabrication, and the task environment of the

small-scale, medical-oriented, and untethered soft robots.

Our choice on the application of BO and GPs to directly

learn the controller parameters of our soft millirobot is

based on three aspects. First, BO offers the efficient data-

driven optimization of continuum and complex black-box

Table 5. Comparison of the learning performances for changing

medium viscosities.

Test Medium Type Performance (mm)

Median IQR

cP1 Standard GP-BO 0.00 1.04
Mean transfer 0.95 1.21

cP3 Standard GP-BO 0.00 1.25
Mean transfer 1.25 1.44

cP6 Standard GP-BO 0.98 1.35
Mean transfer 1.21 1.48

cP9 Standard GP-BO 0.00 1.32
Mean transfer 1.21 0.70

cP20 Standard GP-BO 0.00 0.19
Mean transfer 0.67 1.10

cP35 Standard GP-BO 0.00 0.00
Mean transfer 0.00 0.99

cP60 Standard GP-BO 0.00 0.00
Mean transfer 0.00 0.00

cP90 Standard GP-BO 0.00 0.00
Mean transfer 0.00 0.00

Table 4. Comparison of the learning performances for changing

roughness values.

Test Surface Type Performance (mm)

Median IQR

P800 Standard GP-BO 0.00 1.11
Mean transfer 1.18 0.59

P400 Standard GP-BO 0.48 1.06
Mean transfer 1.07 0.79

P240 Standard GP-BO 0.00 0.00
Mean transfer 1.14 0.35

P120 Standard GP-BO 0.00 0.82
Mean transfer 0.37 1.14

P60 Standard GP-BO 0.00 0.00
Mean transfer 0.00 1.01

Fig. 8. The learning of the controller parameters for the

changing roughness values of the test surfaces (upper row P800,

lower row P60) within 20 physical experiments in 3 independent

learning runs (a) and (c) without utilizing the prior information

and (b) and (d) with utilizing the prior information. Overall

performances of the learning runs with the standard BO (left

bars) and the mean transfer method (right bars) reported with

box plots for all test cases (e).
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functions that do not have a closed-form definition. This

feature addresses our challenges with not having a deter-

ministic model for the kinematics for our robot and requir-

ing to achieve optimized walking gaits in a small number

of experiments. Second, the investigated function can be

represented with GPs within BO, which allows capturing

the noise and unknown disturbances. As our robot inherits

fabrication-, material-, and interaction-based performance

disturbances, GPs provide us with a walking gait function

representation that includes these variances. Finally, BO is

a global optimization tool that avoids getting stuck at local

minima, which is important for exploring the parameter

space of the investigated function. Combined with the

appropriate TL method, this feature allowed us to over-

come local minima while adapting the controller

parameters to different robots and task spaces. While we

do not claim that BO is the best or only suitable optimiza-

tion technique here, these three aspects successfully

address the controller and modeling challenges existing for

our robotic system and make the BO the choice of our

application.

The experimental results in this study show that our

approach of using BO with GPs and TL methods allowed

a data-efficient (i.e., using as few experiments as possible)

controller learning that achieves adaptation to different

task spaces within a wide range (i.e., on the scale of an

order of magnitude) of surface and medium properties.

Our main goal is to allow the learning system to explore

the controller parameter space to find more of the para-

meter sets that generate successful walking gaits in

response to changing task environments. For this purpose,

we configured our BO to favor exploration more than

exploitation. That is why we do not focus on finding the

optimum walking gait controller parameters for each robot

or task space in our experiments. Consequently, our cur-

rent approach does not establish a straightforward correla-

tion between the change of controller parameters with

respect to changing robot and task conditions. The com-

parative results between the standard BO and the TL

methods show that both approaches can find sub-optimum

parameter sets owing to the statistical nature of the learn-

ing method, whose results are given in Appendix C for the

task space adaptation experiments. However, we propose

that TL methods may allow the system to explore a larger

portion of the function space in a fewer number of physi-

cal experiments, hence achieving data-efficiency in

learning.

In terms of experimental learning efficiency, the trans-

fer of the prior mean information outperformed the other

TL methods in our experiments. The transfer of this infor-

mation allowed the BO to start the parameter exploration

in the function space within the regions of high-

performance result expectations. Therefore, it took the BO

much faster to explore the parameter spaces that generate

optimum walking gaits (see Extension 8 for a sample com-

parison of parameter selection with the standard BO and

mean transfer method). We see the same effect for the test

case of robot 3 walking on P800 in Figure 5 (s). Here, this

TL method allowed the exploration of the regions with

higher expected results and surpassed the exploration

boundary of the standard BO. The larger variance in the

stride length performances explored by this TL method is

caused by this exploration tendency. In comparison, we

see that the HP-4 method failed to explore the controller

parameters that yield optimum gaits because of the trans-

fer of the signal variance parameter s2
f . When this para-

meter was optimized s2
f for a single robot (i.e., robot 3 on

paper in our case), it resulted in a smaller value than that

used in standard BO and eventually it decreased the explo-

ration weight in (11). Thus, the BO that started with this

transferred parameter value focused more on the exploita-

tion of known regions as soon as it found a parameter set

Fig. 9. The learning of the controller parameters for the

changing test medium viscosity (upper row cP1, lower row

cP90) within 20 physical experiments in 3 independent learning

runs (a) and (c) without the prior information and (b) and (d)

with the prior information. Overall performances of the learning

runs with the standard BO (left bars) and the mean

transfer approach (right bars) reported with box plots for all test

cases (e).
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generating non-zero performance, and avoided exploring

the unobserved regions for the remaining iteration steps in

the learning runs. We see the influence of the hindered

exploration in the first column of Figure 5. We see that

the transfer of the length scale hyperparameters in HP-lc
was typically ineffective in our test cases because the

length scale is bound to the robot geometry and magnetic

profile, and we used robots with the same geometries in

the experiments. The hybrid transfer approach, which also

included the transfer of length scale hyperparameters,

showed similar performances with the prior mean transfer.

These similar results also show the ineffectiveness of

length scales hyperparameters and the dominance of prior

mean information. Although the hybrid approach could be

extended by also transferring the variance terms s2
n and

s2
f along with the prior mean information, we did not

include these alternatives in the TL comparison experi-

ments for two reasons. First, the negative effect of the sig-

nal variance s2
f on the exploration capability was already

shown and, second, s2
n, i.e., the noise in the collected data-

set remained the same for all test cases as we used the

same hardware setup for all our experiments. The values

of the hyperparameters can also be seen in Appendix C.

The choice of the parameters such as the kernels (Wilson,

2014) and hyperparameters (Chen and Wang, 2018) can

also be replaced with other methods, however, the sys-

tematic analysis of their influence on learning perfor-

mance is beyond the scope of our current study.

In the learning experiments that compare the standard

BO and four TL approaches, we chose to represent learn-

ing performance with median and IQR instead of mean

and standard deviation (as seen in Figure 4), since IQR is

a robust measure of scale, as it is less sensitive to the out-

liers in the data. Moreover, dissimilar to standard devia-

tion, IQR can represent the skewness in the distribution of

the walking performance results, which becomes more

apparent as the performance values get closer to the ends

of possible performance ranges. In addition to its advan-

tages in the statistical distribution representation, IQR does

not report any unachievable result according to the gait

definition in Section 2.2.

6. Conclusion and future work

In this study, we have investigated the use of BO with GPs

to experimentally learn the controller parameters for the

walking gait of a magnetic soft millirobot. We have cre-

ated benchmark datasets consisting of 750 experimental

results using an exhaustive search to find the walking gait

function space for five different test cases. We then used

these datasets to compare the effectiveness of four differ-

ent TL methods to complement the standard BO learning.

In these experiments that involve 104 learning steps for

each test case, we have shown that the transfer of the prior

mean information increased the BO learning performance

the most in terms of increasing the number of explored

sub-optimum controller parameters and decreasing the

number of required experiments. Based on these findings,

we also applied BO learning together with the prior mean

transfer method on different task spaces with changing

surface adhesion, surface roughness, and medium viscos-

ity. We have shown that controller learning with a BO that

utilizes prior mean transfer demonstrates successful adap-

tation to task spaces in a data-efficient way by exploring

the function space of the robot in fewer experiments to

find a larger group of controller parameters that yield suc-

cessful walking gaits.

Our approach is not only limited to walking gait learn-

ing and it can further be applied to different locomotion

and manipulation controllers for soft robots (Chin et al.,

2020). In the future, studies focusing on small-scale fabri-

cation with higher magnetization resolution may address

the fabrication reproducibility issues (Alapan et al., 2020;

Kim et al., 2018; Xu et al., 2019). However, especially for

robots designed for biomedical operations, the interaction

with the dynamic task environment may still have degrad-

ing robot material and performance effects. For such sce-

narios, a data-efficient controller learning system may

adapt optimum controller parameters to these changes in

the robot. For example, such an approach may be applied

to endoscopic soft robots within or outside the gastrointest-

inal (GI) tract (Son et al., 2020; Yim et al., 2014) using a

small number of trials. Our study can be further extended

to involve the design parameters, such as the magnetic par-

ticle density in our robots, and guide the task-oriented

design strategies for future soft mobile robots. Our

approach can be used to reveal design guidelines to

improve the kinematic models of the small-scale robots

while utilizing the CC approximations (Webster and

Jones, 2010), analytical models (Renda et al., 2014), and

FEMs (Largilliere et al., 2015). However, as the BO we

are using is an episodic algorithm, meaning that each sug-

gested parameter set must be evaluated first in an experi-

ment, the adaptation to design optimization will require

the experiments to be run either in a simulation environ-

ment or an automated rapid fabrication system that can be

integrated within the actuation architecture. The systema-

tic comparison of our experimental approach to alternative

optimization and control methods supported with simula-

tions such as intelligent trial and error (Cully et al., 2015),

evolution algorithms (Kriegman et al., 2020), or policy

gradients (Sehnke et al., 2010) is beyond the scope of our

current study but is an interesting task for future work. We

believe that the benchmark datasets available in this study

can be used to compare these different methods. Our long-

term vision is to build fully autonomous systems that can
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control, track, evaluate, and optimize soft robots operating

in changing complex real-world environments, with mini-

mum human involvement.
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Appendix A. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Appendix B. Pseudo-code for robot tracking

and motion evaluation algorithm

The pseudo-code for robot tracking and motion evaluation

is given in Algorithm 1.

Appendix C. Hyperparameter and controller

parameter sets

Tables 6–9 list the exact values of the GP hyperparameters

used in the TL experiments and the controller parameter

sets in the experiments for the adaptation to task spaces,

and Table 10 lists the nomenclature used throughout the

article.

Table of Multimedia Extensions.

Extension Media
type

Description

1 Video Robot tracking and gait detection
output.

2 Video Comparison of walking on paper and
PDMS-2.

3 Video Comparison of walking gaits on P800
and P60.

4 Video Comparison of walking gaits inside
cP1 and cP90.

5 Image Learning run details of the complete
set of adhesive surfaces.

6 Image Learning run details of the complete
set of rough surfaces.

7 Image Learning run details of the complete
set of viscous media.

8 Video Sample learning runs comparing the
parameter selection process by a
standard BO with prior mean transfer.

Algorithm 1. Robot Tracking and Motion Evaluation.

1: while Test is running do
2: Image Capture robot’s image by orthogonal camera,
3: Image Correct distortion and misalignment in the Image,
4: RobotImage Apply threshold on Image to find robot pixels,
5: RobotLegs Find leg positions running Grassfire

algorithm on RobotImage,
6: for Leg 2 RobotLegs do
7: LegState Label leg state as ’touchDown’, ’liftOff’, or

‘slipping’,
8: RobotState Label robot state using LegState
9: MotionType Label robot’s motion either as walking or

not by comparing RobotState throughout the actuation
sequence with the four states in Figure 1(f)

Table 6. Hyperparameter sets used in the benchmark tests.

Learning Method sn sf la0
c la1

c

Standard 0.29 1.85 17.75 15.25
HP-4 0.29 0.80 10.12 9.99
HP-lc 0.29 1.85 12.47 12.74
Mean 0.29 1.85 17.75 15.25
Hybrid 0.29 1.85 12.47 12.74

Table 7. Best-performing controller parameter sets and the

corresponding stride length averages for the changing adhesion

strength characteristics of the test surfaces within 20 physical

experiments in 3 independent learning runs (60 experiments in

total) with and without utilizing the prior information.

Surface Type Controller
parameters

Stride
length
S (mm)
(average 6 SD)Bmax

(mT)
f
(Hz)

a1 (8) a2 (8)

Paper Standard 11.0 0.5 0.0 80.0 1.48 6 0.15
TL 12.0 0.5 0.0 90.0 1.29 6 0.12

PS Standard 8.0 0.5 35.0 65.0 0.94 6 0.03
TL 12.0 4.0 35.0 90.0 1.46 6 0.05

PDMS-0 Standard 12.0 1.0 50.0 85.0 1.18 6 0.05
TL 11.0 0.5 10.0 80.0 1.49 6 0.19

PDMS-1 Standard 5.0 0.5 0.0 90.0 0.56 6 0.06
TL 12.0 0.5 0.0 85.0 1.37 6 0.34

PDMS-2 Standard 12.0 0.5 30.0 90.0 1.29 6 0.06
TL 12.0 0.5 20.0 90.0 1.24 6 0.05
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Table 8. Best-performing controller parameter sets and the

corresponding stride length averages for the changing roughness

values of the test surfaces within 20 physical experiments in 3

independent learning runs (60 experiments in total) with and

without utilizing the prior information.

Surface Type Controller
parameters

Stride length
S (mm)
(average 6 SD)

Bmax

(mT)
f
(Hz)

a1

(8)
a2

(8)

P800 Standard 12.0 0.5 0.0 90.0 1.28 6 0.03
TL 12.0 4.0 30.0 85.0 1.36 6 0.05

P400 Standard 12.0 0.5 15.0 70.0 1.18 6 0.11
TL 12.0 0.5 40.0 90.0 1.25 6 0.10

P240 Standard 12.0 0.5 20.0 85.0 1.34 6 0.08
TL 12.0 0.5 25.0 90.0 1.28 6 0.04

P120 Standard 12.0 0.5 0.0 90.0 1.17 6 0.11
TL 12.0 2.0 30.0 80.0 1.27 6 0.13

P60 Standard 12.0 4.0 30.0 85.0 1.26 6 0.11
TL 12.0 6.0 30.0 80.0 1.50 6 0.11

Table 9. Best-performing controller parameter sets and the

corresponding stride length averages for the changing viscosity

values of the test medium within 20 physical experiments in 3

independent learning runs (60 experiments in total) with and

without utilizing the prior information.

Medium Type Controller
parameters

Stride length
S (mm)
(average 6 SD)

Bmax

(mT)
f
(Hz)

a1

(8)
a2

(8)

cP1 Standard 12.0 0.5 25.0 90.0 1.41 6 0.03
TL 11.0 4.0 25.0 75.0 1.45 6 0.05

cP3 Standard 10.0 1.0 25.0 80.0 1.69 6 0.04
TL 12.0 0.5 0.0 80.0 1.69 6 0.04

cP6 Standard 12.0 0.5 15.0 85.0 1.72 6 0.09
TL 12.0 0.5 10.0 90.0 1.61 6 0.08

cP9 Standard 12.0 0.5 5.0 80.0 1.54 6 0.02
TL 12.0 0.5 30.0 75.0 1.53 6 0.03

cP20 Standard 9.0 0.5 35.0 65.0 1.18 6 0.05
TL 9.0 0.5 0.0 85.0 1.55 6 0.14

cP35 Standard 12.0 0.5 1.0 60.0 1.26 6 0.10
TL 11.0 0.5 25.0 65.0 1.22 6 0.06

cP60 Standard 12.0 20.0 30.0 75.0 0.44 6 0.14
TL 12.0 0.5 25.0 65.0 1.16 6 0.03

cP90 Standard 5.0 0.5 10.0 65.0 0.97 6 0.16
TL 8.0 0.5 30.0 65.0 1.09 6 0.11

Table 10. Nomenclature.

B Magnetic field
Bmax Maximum magnetic field magnitude
f Frequency of the actuation cycle
a1, 2 Two magnetic field orientation angles
L Robot length
w Robot width
h Robot height
Rq Root mean square height
S Stride length
u Controller parameter set
Y Complete search space for u
S(u) Average stride length performance of the robot for a

given u
n Zero-mean Gaussian noise in each experimental

measurement
s2
n Variance of the noise n

~S Observed stride length measured with noise n
m(u) Prior mean for a given set u
k Kernel (i.e., the covariance function) of the GP
D Experimental data
N Number of experiments
di, j Kronecker delta for experiments i and j
lc Length scale
s2
f Variance in the signal

aacq Acquisition function
F Gaussian cumulative density function
f Gaussian probability density function
j GP exploration/exploitation weight
S0 E xperimental displacement measurement
Ŝ N ormalized gait performance
e N ormalized error of the stride length performance
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